Bounded conditional mean imputation with an approximate posterior

نویسنده

  • Ulpu Remes
چکیده

Missing-feature imputation or reconstruction is used in noiserobust automatic speech recognition to recover the unobserved clean speech information. Reconstruction methods often use the noise-corrupted observations and a clean speech prior to calculate a point estimate for the unobserved clean speech features, whereas the approach proposed in this work associates the unobserved clean speech features with a full posterior distribution. The posterior mean can be used as a clean speech estimate in bounded conditional mean imputation and the posterior variance can be included as observation uncertainties. The proposed method is evaluated in a large-vocabulary noise-robust speech recognition task with speech data recorded in real noisy environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alternating imputation posterior estimation of models with crossed random effects

Generalized linear mixedmodels or latent variable models for categorical data are difficult to estimate if the random effects or latent variables vary at non-nested levels, such as persons and test items. Clayton and Rasbash (1999) suggested an Alternating Imputation Posterior (AIP) algorithm for approximate maximum likelihood estimation. For item responsemodels with random item effects, the al...

متن کامل

Bayesian Analysis of Survival Data with Spatial Correlation

Often in practice the data on the mortality of a living unit correlation is due to the location of the observations in the study‎. ‎One of the most important issues in the analysis of survival data with spatial dependence‎, ‎is estimation of the parameters and prediction of the unknown values in known sites based on observations vector‎. ‎In this paper to analyze this type of survival‎, ‎Cox...

متن کامل

Innovative Imputation Techniques Designed for the Agricultural Resource Management Survey

The Agricultural Resource Management Survey (ARMS) is a high dimensional, complex economic survey which suffers from item non-response. Here, we introduce methods of varying complexity for imputation in this survey. The methods include stratified mean imputation, the approximate Bayesian bootstrap, and non-iterative and iterative sequential regression. The iterative sequential regression is a f...

متن کامل

‎Bounded approximate connes-amenability of dual Banach algebras

 We study the notion of bounded approximate Connes-amenability for‎ ‎dual Banach algebras and characterize this type of algebras in terms‎ ‎of approximate diagonals‎. ‎We show that bounded approximate‎ ‎Connes-amenability of dual Banach algebras forces them to be unital‎. ‎For a separable dual Banach algebra‎, ‎we prove that bounded‎ ‎approximate Connes-amenability implies sequential approximat...

متن کامل

An Empirical Comparison of Performance of the Unified Approach to Linearization of Variance Estimation after Imputation with Some Other Methods

Imputation is one of the most common methods to reduce item non_response effects. Imputation results in a complete data set, and then it is possible to use naϊve estimators. After using most of common imputation methods, mean and total (imputation estimators) are still unbiased. However their variances (imputation variances) are underestimated by naϊve variance estimators. Sampling mechanism an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013